The Numerical Evaluation of Double Integrals
نویسندگان
چکیده
منابع مشابه
Numerical Evaluation of Wiener Integrals
Here, Jc F[x]w(dx) denotes the Wiener integral, and / F[0(u, ■ )]v(du) denotes an integral over some Euclidean space. In [1] Cameron determined a pair (v, 0) by imposing on (1.2) the condition that the formula be exact for polynomial functionals of degree ^3. Imposing the same requirement, Vladimirov [5] constructed a family of pairs (v, 6). In this paper we shall develop a class of approximati...
متن کاملNumerical Evaluation of Diffraction Integrals
This paper describes a simple numerical integration method for diffraction integrals which is based on elementary geometrical considerations of the manner in which different portions of the incident wavefront contribute to the diffracted field. The method is applicable in a wide range of cases as the assumptions regarding the type of integral are minimal, and the results are accurate even when ...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملNumerical Evaluation of Multiple Integrals I
Introduction. Several specific methods for numerical evaluation of integrals over higher dimensional regions have been proposed. James Clerk-Maxwell [_1 j proposed the formulas for the rectangle and the rectangular parallelopipedon in 1877. Appell, Burnside, Ionescue, and Mineur have developed special formulas for planar regions. Tyler [2] recently gave formulas for rectangles, parabolic region...
متن کاملHalf-numerical evaluation of pseudopotential integrals
A half-numeric algorithm for the evaluation of effective core potential integrals over Cartesian Gaussian functions is described. Local and semilocal integrals are separated into two-dimensional angular and one-dimensional radial integrals. The angular integrals are evaluated analytically using a general approach that has no limitation for the l-quantum number. The radial integrals are calculat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1923
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500036087