The perfect order subset conjecture for simple groups
نویسندگان
چکیده
منابع مشابه
On the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملOn the product decomposition conjecture for finite simple groups
We prove that if G is a finite simple group of Lie type and S a subset of G of size at least two then G is a product of at most c log |G|/ log |S| conjugates of S, where c depends only on the Lie rank of G. This confirms a conjecture of Liebeck, Nikolov and Shalev in the case of families of simple groups of bounded rank. We also obtain various related results about products of conjugates of a s...
متن کاملKimmerle Conjecture for the Held and O’nan Sporadic Simple Groups
Using the Luthar–Passi method, we investigate the Zassenhaus and Kimmerle conjectures for normalized unit groups of integral group rings of the Held and O’Nan sporadic simple groups. We confirm the Kimmerle conjecture for the Held simple group and also derive for both groups some extra information relevant to the classical Zassenhaus conjecture. Let U(ZG) be the unit group of the integral group...
متن کاملA Simple Classification of Finite Groups of Order p2q2
Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, respectively. In this paper, we show that up to isomorphism, there are four groups of order p^2q^2 when Q and P are cyclic, three groups when Q is a cyclic and P is an elementary ablian group, p^2+3p/2+7 groups when Q is an elementary ablian group an...
متن کاملNonabelian Groups with Perfect Order Subsets
Let G be a finite group and let x ∈ G. Define the order subset of G determined by x to be the set of all elements in G that have the same order as x. A group G is said to have perfect order subsets if the number of elements in each order subset of G is a divisor of |G|. In this article we prove a theorem for a class of nonabelian groups, which is analogous to Theorem 4 in [2]. We then prove tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2013
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2013.05.029