The Proposal of Two New Recurrent Radial Basis Function Neural Networks
نویسندگان
چکیده
منابع مشابه
The Proposal of Two New Recurrent Radial Basis Function Neural Networks
J. Park and J. Wsandberg, "Universal approximation using radial basis functions network," Neural Comput. , vol. 3, pp. 246–257, 1991. S. Lee and R. M. Kil, "A Gaussian potential function network with hierarchically self-organizing learning," Neural Netw. , vol. 4, pp. 207–224, 1991. J. Moody and C. J. Darken, "Fast learning in network of locally-tuned processing units,&...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملA New Recurrent Radial Basis Function Network
Cheung and Xu 2001 has presented a dual structural recurrent radial basis function (RBF) network by considering the different scales in net’s inputs and outputs. However, such a network implies that the underlying functional relationship between the net’s inputs and outputs is linear separable, which may not be true from a practical viewpoint. In this paper, we therefore propose a new recurrent...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملRobust radial basis function neural networks
Function approximation has been found in many applications. The radial basis function (RBF) network is one approach which has shown a great promise in this sort of problems because of its faster learning capacity. A traditional RBF network takes Gaussian functions as its basis functions and adopts the least-squares criterion as the objective function, However, it still suffers from two major pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2014
ISSN: 0975-8887
DOI: 10.5120/15992-4955