The pseudo-p-Laplace eigenvalue problem and viscosity solutions asp→ ∞

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The p - Laplace eigenvalue problem as p → ∞ in a

We consider the p–Laplacian operator on a domain equipped with a Finsler metric. We recall relevant properties of its first eigenfunction for finite p and investigate the limit problem as p → ∞.

متن کامل

Nonlinear Picone identities to Pseudo $p$-Laplace operator and applications

In this paper, we derive a nonlinear Picone identity to the pseudo p-Laplace operator, which contains some known Picone identities and removes a condition used in many previous papers. Some applications are given including a Liouville type theorem to the singular pseudo p-Laplace system, a Sturmian comparison principle to the pseudo p-Laplace equation, a new Hardy type inequality with weight an...

متن کامل

The p - Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric ∗

We consider the p–Laplacian operator on a domain equipped with a Finsler metric. After deriving and recalling relevant properties of its first eigenfunction for p > 1, we investigate the limit problem as p → 1.

متن کامل

The p - Laplace eigenvalue problem as p → ∞ in a Finsler metric

We consider the p-Laplacian operator on a domain equipped with a Finsler metric. We recall relevant properties of its first eigenfunction for finite p and investigate the limit problem as p →∞.

متن کامل

Weak and Viscosity Solutions of the Fractional Laplace Equation

Aim of this paper is to show that weak solutions of the following fractional Laplacian equation { (−∆)su = f in Ω u = g in Rn \ Ω are also continuous solutions (up to the boundary) of this problem in the viscosity sense. Here s ∈ (0, 1) is a fixed parameter, Ω is a bounded, open subset of Rn (n > 1) with C2-boundary, and (−∆)s is the fractional Laplacian operator, that may be defined as (−∆)u(x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2004

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv:2003035