The (q,t)-Gaussian process
نویسندگان
چکیده
منابع مشابه
The Variational Gaussian Process
Variational inference is a powerful tool for approximate inference, and it has been recently applied for representation learning with deep generative models. We develop the variational Gaussian process (VGP), a Bayesian nonparametric variational family, which adapts its shape to match complex posterior distributions. The VGP generates approximate posterior samples by generating latent inputs an...
متن کاملThe Echo State Gaussian Process
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple, computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs, outperforming classical approaches on a number of benchmark tasks. In this paper, we introduc...
متن کاملThe Gaussian Process Density Sampler
The Gaussian process is a useful prior on functions for Bayesian regression and classification. Density estimation with a Gaussian process prior has been difficult, however, due to the requirements that densities be nonnegative and integrate to unity. The statistics community has explored the use of a logistic Gaussian process for density estimation, relying on various methods of approximating ...
متن کاملThe Gaussian Process Density Sampler
We present the Gaussian Process Density Sampler (GPDS), an exchangeable generative model for use in nonparametric Bayesian density estimation. Samples drawn from the GPDS are consistent with exact, independent samples from a fixed density function that is a transformation of a function drawn from a Gaussian process prior. Our formulation allows us to infer an unknown density from data using Mar...
متن کاملVariational Gaussian process classifiers
Gaussian processes are a promising nonlinear regression tool, but it is not straightforward to solve classification problems with them. In this paper the variational methods of Jaakkola and Jordan are applied to Gaussian processes to produce an efficient Bayesian binary classifier.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2012
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2012.08.006