The Ricci curvature in noncommutative geometry
نویسندگان
چکیده
منابع مشابه
The Comparison Geometry of Ricci Curvature
We survey comparison results that assume a bound on the manifold’s Ricci curvature.
متن کاملInequalities on the Ricci curvature
We improve Chen-Ricci inequalities for a Lagrangian submanifold Mn of dimension n (n 2) in a 2n -dimensional complex space form M̃2n(4c) of constant holomorphic sectional curvature 4c with a semi-symmetric metric connection and a Legendrian submanifold Mn in a Sasakian space form M̃2n+1(c) of constant φ -sectional curvature c with a semi-symmetric metric connection, respectively.
متن کاملPositive Ricci Curvature
We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...
متن کاملAspects of Ricci Curvature
We describe some new ideas and techniques introducedto study spaces with a given lower Ricci curvature bound, and discuss a number of recent results about such spaces.
متن کاملRicci Curvature modulo Homotopy
This article is a report summarizing recent progress in the geometry of negative Ricci and scalar curvature. It describes the range of general existence results of such metrics on manifolds of dimension ≥ 3. Moreover it explains flexibility and approximation theorems for these curvature conditions leading to unexpected effects. For instance, we find that “modulo homotopy” (in a specified sense)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Noncommutative Geometry
سال: 2019
ISSN: 1661-6952
DOI: 10.4171/jncg/324