The secant varieties of nilpotent orbits

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self–Dual Algebraic Varieties and Nilpotent Orbits

We give a construction of nonsmooth self-dual projective algebraic varieties. They appear as certain projectivized orbit closures for some linear actions of reductive algebraic groups. Applying this construction to adjoint representations, we obtain geometric characterization of distinguished nilpotent elements of semisimple Lie algebras [BC1], [BC2] (i.e., nilpotent elements whose centralizer ...

متن کامل

Secant Varieties of Toric Varieties

If X is a smooth projective toric variety of dimension n we give explicit conditions on characters of the torus giving an embedding X →֒ Pr that guarantee dimSecX = 2n+ 1. We also give necessary and sufficient conditions for a general point of SecX to lie on a unique secant line when X is embedded into Pr using a complete linear system. For X of dimension 2 and 3 we give formulas for deg SecX in...

متن کامل

Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits

Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...

متن کامل

Secant varieties

The goal of this talk is to introduce secant varieies and show connections of secant varieties of Veronese variety to the Waring problem. 1 Secant varieties Let X ⊂ P be a variety over k, where k is algebraically closed field of characteristic 0 (or just assume k = C). Definition 1.1. For s ≥ 1 the s-th higher secant variety of X is

متن کامل

Grassmannians of Secant Varieties

For an irreducible projective variety X, we study the family of h-planes contained in the secant variety Sec k (X), for 0 < h < k. These families have an expected dimension and we study varieties for which the expected dimension is not attained; for these varieties, making general consecutive projections to lower dimensional spaces, we do not get the expected singularities. In particular, we ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 2008

ISSN: 2156-2261

DOI: 10.1215/kjm/1250280975