The spatial sign covariance matrix with unknown location
نویسندگان
چکیده
منابع مشابه
Regularizing the covariance matrix using spatial information
Learning algorithms can only perform well when the model is trained using sufficient number of training examples with respect to the complexity of the model. To obtain good generalization performance with a limited training data set, it is essential that prior knowledge of the problem is included in the representation of the objects or in the model of the data. Here we will consider image data ...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولCOVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS
Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...
متن کاملThe intraclass covariance matrix.
Introduced by C.R. Rao in 1945, the intraclass covariance matrix has seen little use in behavioral genetic research, despite the fact that it was developed to deal with family data. Here, I reintroduce this matrix, and outline its estimation and basic properties for data sets on pairs of relatives. The intraclass covariance matrix is appropriate whenever the research design or mathematical mode...
متن کاملProbing the covariance matrix
By drawing an analogy between the logarithm of a probability distribution and a physical potential, it is natural to ask the question, “what is the effect of applying an external force on model parameters?" In Bayesian inference, parameters are frequently estimated as those that maximize the posterior, yielding the maximum a posteriori (MAP) solution, which corresponds to minimizing φ = −log(po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2014
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2014.05.004