The Steiner diameter of a graph with prescribed girth
نویسندگان
چکیده
منابع مشابه
The Steiner diameter of a graph
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
متن کاملUpper bounds on the Steiner diameter of a graph
Let G be a connected graph of order p and S a nonempty set of vertices of G. Then the Steiner distance d(S) of S is the minimum size of a connected subgraph of G whose vertex set contains S. If n is an integer, 2 ≤ n ≤ p, the Steiner n-diameter, diamn(G), of G is the maximum Steiner distance of any n-subset of vertices of G. We give a bound on diamn(G) for a graph G in terms of the order of G a...
متن کاملIndices of Trees with a Prescribed Diameter
Let G = (V (G), E(G)) be a simple graph, and let A be its adjacency matrix. The characteristic polynomial det(xI −A) of A is called the characteristic polynomial of G, and is denoted by φ(G, x). The eigenvalues of A (i.e. the zeros φ(G, x)) are called the eigenvalues of G. The index of a graph G is the largest eigenvalue of G, denoted by ρ(G). It has been studied extensively in the literature [...
متن کاملOn the girth of the annihilating-ideal graph of a commutative ring
The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.
متن کاملGraphs of Prescribed Girth and Bi-Degree
We say that a bipartite graph Γ(V1 ∪ V2, E) has bi-degree r, s if every vertex from V1 has degree r and every vertex from V2 has degree s. Γ is called an (r, s, t)–graph if, additionally, the girth of Γ is 2t. For t > 3, very few examples of (r, s, t)–graphs were previously known. In this paper we give a recursive construction of (r, s, t)–graphs for all r, s, t ≥ 2, as well as an algebraic con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2013
ISSN: 0012-365X
DOI: 10.1016/j.disc.2013.02.013