The Stirling Polynomial of a Simplicial Complex
نویسندگان
چکیده
منابع مشابه
The Stirling Polynomial of a Simplicial Complex
We introduce a new encoding of the face numbers of a simplicial complex, its Stirling polynomial, that has a simple expression obtained by multiplying each face number with an appropriate generalized binomial coefficient. We prove that the face numbers of the barycentric subdivision of the free join of two CW -complexes may be found by multiplying the Stirling polynomials of the barycentric sub...
متن کاملInvariance of the barycentric subdivision of a simplicial complex
In this paper we prove that a simplicial complex is determined uniquely up to isomorphism by its barycentric subdivision as well as its comparability graph. We also put together several algebraic, combinatorial and topological invariants of simplicial complexes.
متن کاملinvariance of the barycentric subdivision of a simplicial complex
in this paper we prove that a simplicial complex is determined uniquely up to isomorphism by its barycentric subdivision as well as its comparability graph. we also put together several algebraic, combinatorial and topological invariants of simplicial complexes.
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولThe Tutte polynomial of a graph, depth-first search, and simplicial complex partitions
One of the most important numerical quantities that can be computed from a graph G is the two-variable Tutte polynomial. Specializations of the Tutte polynomial count various objects associated with G, e.g., subgraphs, spanning trees, acyclic orientations, inversions and parking functions. We show that by partitioning certain simplicial complexes related to G into intervals, one can provide com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2005
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-005-1190-2