The stokes operator with Neumann boundary conditions in Lipschitz domains
نویسندگان
چکیده
منابع مشابه
Estimates for the Stokes Operator in Lipschitz Domains
We study the Stokes operator A in a threedimensional Lipschitz domain Ω. Our main result asserts that the domain of A is contained in W 1,p 0 (Ω)∩W (Ω) for some p > 3. Certain L∞-estimates are also established. Our results may be used to improve the regularity of strong solutions of Navier-Stokes equations in nonsmooth domains. In the appendix we provide a simple proof of area integral estimate...
متن کاملThe Neumann Problem on Lipschitz Domains
Au — 0 in D; u = ƒ on bD9 where ƒ and its gradient on 3D belong to L(do). For C domains, these estimates were obtained by A. P. Calderón et al. [1]. For dimension 2, see (d) below. In [4] and [5] we found an elementary integral formula (7) and used it to prove a theorem of Dahlberg (Theorem 1) on Lipschitz domains. Unknown to us, this formula had already been discovered long ago by Payne and We...
متن کاملThe ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions
On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...
متن کاملEstimates for the ∂̄−neumann Operator on Strongly Pseudo-convex Domain with Lipschitz Boundary
On a bounded strongly pseudo-convex domain X in C with a Lipschitz boundary, we prove that the ∂̄−Neumann operator N can be extended as a bounded operator from Sobolev (−1/2)−spaces to the Sobolev (1/2)−spaces. In particular, N is compact operator on Sobolev (−1/2)−spaces.
متن کاملThe Martin Boundary in Non-lipschitz Domains
The Martin boundary with respect to the Laplacian and with respect to uniformly elliptic operators in divergence form can be identified with the Euclidean boundary in Cγ domains, where γ(x) = bx log log(1/x)/ log log log(1/x), b small. A counterexample shows that this result is very nearly sharp.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2011
ISSN: 1072-3374,1573-8795
DOI: 10.1007/s10958-011-0400-0