The stokes operator with Neumann boundary conditions in Lipschitz domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for the Stokes Operator in Lipschitz Domains

We study the Stokes operator A in a threedimensional Lipschitz domain Ω. Our main result asserts that the domain of A is contained in W 1,p 0 (Ω)∩W (Ω) for some p > 3. Certain L∞-estimates are also established. Our results may be used to improve the regularity of strong solutions of Navier-Stokes equations in nonsmooth domains. In the appendix we provide a simple proof of area integral estimate...

متن کامل

The Neumann Problem on Lipschitz Domains

Au — 0 in D; u = ƒ on bD9 where ƒ and its gradient on 3D belong to L(do). For C domains, these estimates were obtained by A. P. Calderón et al. [1]. For dimension 2, see (d) below. In [4] and [5] we found an elementary integral formula (7) and used it to prove a theorem of Dahlberg (Theorem 1) on Lipschitz domains. Unknown to us, this formula had already been discovered long ago by Payne and We...

متن کامل

The ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions

On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...

متن کامل

Estimates for the ∂̄−neumann Operator on Strongly Pseudo-convex Domain with Lipschitz Boundary

On a bounded strongly pseudo-convex domain X in C with a Lipschitz boundary, we prove that the ∂̄−Neumann operator N can be extended as a bounded operator from Sobolev (−1/2)−spaces to the Sobolev (1/2)−spaces. In particular, N is compact operator on Sobolev (−1/2)−spaces.

متن کامل

The Martin Boundary in Non-lipschitz Domains

The Martin boundary with respect to the Laplacian and with respect to uniformly elliptic operators in divergence form can be identified with the Euclidean boundary in Cγ domains, where γ(x) = bx log log(1/x)/ log log log(1/x), b small. A counterexample shows that this result is very nearly sharp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2011

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-011-0400-0