The stringy instanton partition function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-instanton partition functions

Duality arguments are used to determine D-instanton contributions to certain effective interaction terms of type II supergravity theories in various dimensions. This leads to exact expressions for the partition functions of the finite N D-instanton matrix model in d = 4 and 6 dimensions that generalize our previous expression for the case d = 10. These results are consistent with the fact that ...

متن کامل

The Dimer Partition Function

We apply the Ginzburg criterion to the dimer problem and we solve the apparent contradiction of a system with mean field α = 12 , the typical value of tricritical systems, and upper critical dimension Dcr = 6. We find that the system has upper critical dimensionDcr = 6 , while for D ≤ 4 it should undergo a first order phase transition. We comment on the latter wrong result examining the approxi...

متن کامل

The Partition Function Revisited

In 1918, Hardy and Ramanujan wrote their landmark paper deriving the asymptotic formula for the partition function. The paper however was fundamental for another reason, namely for introducing the circle method in questions of additive number theory. Though this method is powerful, it is often difficult and technically complicated to employ. In 2011, Bruinier and Ono discovered a new algebraic ...

متن کامل

Instanton Contribution to the Sivers Function

We study the Sivers function for valence u and d quarks in the proton within the instanton model for QCD vacuum, adopting the MIT bag model wave functions for quarks. Within approaches based on perturbative one-gluon final state interactions a non-zero value of the Sivers function is related to the presence of both S and P wave components in quark wave functions. We show that the instanton-indu...

متن کامل

Dissecting the Stanley partition function

Let p(n) denote the number of unrestricted partitions of n. For i = 0, 2, let pi(n) denote the number of partitions π of n such that O(π)−O(π) ≡ i (mod 4). Here O(π) denotes the number of odd parts of the partition π and π is the conjugate of π. R. Stanley [13], [14] derived an infinite product representation for the generating function of p0(n)− p2(n). Recently, H. Swisher [15] employed the ci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2014

ISSN: 1029-8479

DOI: 10.1007/jhep01(2014)038