The Strong Bernstein-Gelfand-Gelfand Resolution for Generalized Kac-Moody Algebras .II. An Explicit Construction of the Resolution
نویسندگان
چکیده
منابع مشابه
On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras
A Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras and arbitrary subsets of the set of simple roots is proven. Moreover, quantum group analogs of the Bernstein-Gelfand-Gelfand resolution for symmetrizable Kac-Moody algebras are established. For quantized enveloping algebras with fixed deformation parameter q ∈ C \ {0} exactness is proven for all q which are not a root of un...
متن کاملDifferential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds
The quantum group version of the Bernstein-Gelfand-Gelfand resolution is used to construct a double complex of Uq(g)-modules with exact rows and columns. The locally finite dual of its total complex is identified with the de Rham complex for quantized irreducible flag manifolds. MSC: 17B37, 58B32
متن کاملA generalization of the category O of Bernstein–Gelfand–Gelfand
In the study of simple modules over a simple complex Lie algebra, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this note, we define a family of categories which generalizes the BGG category. We classify the simple modules for some of these categories. As a consequence we show that these categories are semisimple....
متن کاملA characterization of generalized Kac - Moody algebras
Generalized Kac-Moody algebras can be described in two ways: either using generators and relations, or as Lie algebras with an almost positive definite symmetric contravariant bilinear form. Unfortunately it is usually hard to check either of these conditions for any naturally occurring Lie algebra. In this paper we give a third characterization of generalized Kac-Moody algebras which is easier...
متن کاملSome automorphisms of Generalized Kac-Moody algebras
In this paper we consider some algebraic structures associated to a class of outer automorphisms of generalized Kac-Moody (GKM) algebras. These structures have recently been introduced in [2] for a smaller class of outer automorphisms in the case of ordinary Kac-Moody algebras with symmetrizable Cartan matrices. A GKM algebra G = G(A) is essentially described by its Cartan matrix, A = (aij)i,j∈...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1994
ISSN: 0021-8693
DOI: 10.1006/jabr.1994.1212