The submonoid and rational subset membership problems for graph groups
نویسندگان
چکیده
منابع مشابه
The submonoid and rational subset membership problems for graph groups
We show that the membership problem in a finitely generated submonoid of a graph group (also called a right-angled Artin group or a free partially commutative group) is decidable if and only if the independence graph (commutation graph) is a transitive forest. As a consequence we obtain the first example of a finitely presented group with a decidable generalized word problem that does not have ...
متن کاملThe Rational Subset Membership Problem for Groups: A Survey
The class of rational subsets of a group G is the smallest class that contains all finite subsets of G and that is closed with respect to union, product and taking the monoid generated by a set. The rational subset membership problem for a finitely generated group G is the decision problem, where for a given rational subset of G and a group element g it is asked whether g ∈ G. This paper presen...
متن کاملOn the rational subset problem for groups
We use language theory to study the rational subset problem for groups and monoids. We show that the decidability of this problem is preserved under graph of groups constructions with finite edge groups. In particular, it passes through free products amalgamated over finite subgroups and HNN extensions with finite associated subgroups. We provide a simple proof of a result of Grunschlag showing...
متن کاملEigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset
Set X = { M11, M12, M22, M23, M24, Zn, T4n, SD8n, Sz(q), G2(q), V8n}, where M11, M12, M22, M23, M24 are Mathieu groups and Zn, T4n, SD8n, Sz(q), G2(q) and V8n denote the cyclic, dicyclic, semi-dihedral, Suzuki, Ree and a group of order 8n presented by V8n = < a, b | a^{2n} = b^{4} = e, aba = b^{-1}, ab^{...
متن کاملMembership and Finiteness Problems for Rational Sets of Regular Languages
Let Σ be a finite alphabet. A set R of regular languages over Σ is called rational if there exists a finite set E of regular languages over Σ, such that R is a rational subset of the finitely generated semigroup (S, ·) = 〈E〉 with E as the set of generators and language concatenation as a product. We prove that for any rational set R and any regular language R ⊆ Σ∗ it is decidable (1) whether R ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2008
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2007.08.025