The Threshold GARCH Model: Estimation and Density Forecasting for Financial Returns*

Authors
  • YuzhiCai
  • JulianStander
Abstract

برای دانلود باید عضویت طلایی داشته باشید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting for Financial Stock Returns Using a Quantile Function Model

In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a...

متن کامل

Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability

A fast method for estimating the parameters of a stable-APARCH not requiring likelihood or iteration is proposed. Several powerful tests for the (asymmetric) stable Paretian distribution with tail index 1 ă α ă 2 are used for assessing the appropriateness of the stable assumption as the innovations process in stable-GARCH-type models for daily stock returns. Overall, there is strong evidence ag...

متن کامل

Wavelet Linear Density Estimation for a GARCH Model under Various Dependence Structures

We consider n observations from the GARCH-type model: S = σ2Z, where σ2 and Z are independent random variables. We develop a new wavelet linear estimator of the unknown density of σ2 under four different dependence structures: the strong mixing case, the β- mixing case, the pairwise positive quadrant case and the ρ-mixing case. Its asymptotic mean integrated squared error properties are ...

متن کامل

Forecasting real estate returns using financial spreads

This paper examines the predictability of real estate asset returns using a number of time series techniques. A vector autoregressive model, which incorporates financial spreads, is able to improve upon the out of sample forecasting performance of univariate time series models at a short forecasting horizon. However, as the forecasting horizon increases, the explanatory power of such models is ...

متن کامل

The Generalized AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-R) Model for Forecasting Financial Volatility

A new variant of the ARCH class of models for forecasting conditional variance, to be called the Generalized AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-R) Model, is proposed. The GARCH-PARK-R model, utilizing the extreme values, is a good alternative to the Realized Volatility that requires a large amount of intra-daily data, which remain relatively costly and are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دسترسی به متن کامل این مقاله و 23 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

Article info

Journal name: Journal of Financial Econometrics

Year: 2019

ISSN: 1479-8409,1479-8417

DOI: 10.1093/jjfinec/nbz014