The Turán number of blow-ups of trees
نویسندگان
چکیده
A conjecture of Erdős from 1967 asserts that any graph on n vertices which does not contain a fixed r-degenerate bipartite F has at most Cn2−1/r edges, where C is constant depending only F. We show this bound holds for large family graphs, including all blow-ups trees. Our results generalise many previously proven cases the conjecture, related Füredi and Alon, Krivelevich Sudakov. proof uses supersaturation random walk an auxiliary graph.
منابع مشابه
Extremal Graphs for Blow-Ups of Cycles and Trees
The blow-up of a graph H is the graph obtained from replacing each edge in H by a clique of the same size where the new vertices of the cliques are all different. Erdős et al. and Chen et al. determined the extremal number of blow-ups of stars. Glebov determined the extremal number and found all extremal graphs for blowups of paths. We determine the extremal number and find the extremal graphs ...
متن کاملNonpositive curvature of blow - ups
Consider the following situation: MC is a complex manifold of complex dimension n, and DC is a union of smooth complex codimension-one submanifolds (i.e., DC is a smooth divisor). Examples of this situation include: (1) arrangements of projective hyperplanes in CP, as well as various blow-ups of such arrangements along intersections of hyperplanes, (2) nonsingular toric varieties (whereDC is th...
متن کاملChern Classes of Blow-ups
We extend the classical formula of Porteous for blowing-up Chern classes to the case of blow-ups of possibly singular varieties along regularly embedded centers. The proof of this generalization is perhaps conceptually simpler than the standard argument for the nonsingular case, involving Riemann-Roch without denominators. The new approach relies on the explicit computation of an ideal, and a m...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn Blow-Ups and Injectivity of Quivers
This work connects the idea of a “blow-up” of a quiver with that of injectivity, showing that for a class of monic maps Φ, a quiver is Φ-injective if and only if all blow-ups of it are as well. This relationship is then used to characterize all quivers that are injective with respect to the natural embedding of Pn into Cn.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2022
ISSN: ['0095-8956', '1096-0902']
DOI: https://doi.org/10.1016/j.jctb.2022.05.004