The Variable-Step L1 Scheme Preserving a Compatible Energy Law for Time-Fractional Allen-Cahn Equation

نویسندگان

چکیده

In this work, we revisit the adaptive L1 time-stepping scheme for solving time-fractional Allen-Cahn equation in Caputo's form. The implicit is shown to preserve a variational energy dissipation law on arbitrary nonuniform time meshes by using recent discrete analysis tools, i.e., orthogonal convolution kernels and complementary kernels. Then embedding techniques fractional Gr\"onwall inequality were applied establish an $L^2$ norm error estimate meshes. An strategy according dynamical feature of system presented capture multi-scale behaviors improve computational performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

On the maximum principle and energy stability for fully discretized fractional-in-space Allen-Cahn equation

We consider numerical methods for solving the fractional-in-space Allen-Cahn (FiSAC) equation which contains small perturbation parameters and strong noninearilty. Standard fully discretized schemes for the the FiSAC equation will be considered, namely, in time the conventional first-order implicit-explicit scheme or second-order Crank-Nicolson scheme and in space a secondorder finite differenc...

متن کامل

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Tightness for a Stochastic Allen–cahn Equation

We study an Allen–Cahn equation perturbed by a multiplicative stochastic noise that is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive a uniform bound for the diffuse surface area, prove the tightness of solutions in the sharp interface limit, and show the convergence to phase-indicator functions.

متن کامل

Boundary Interface for the Allen-cahn Equation

We consider the Allen-Cahn equation ε∆u + u− u = 0 in Ω, ∂u ∂ν = 0 on ∂Ω, where Ω is a smooth and bounded domain in R such that the mean curvature is positive at each boundary point. We show that there exists a sequence εj → 0 such that the Allen-Cahn equation has a solution uεj with an interface which approaches the boundary as j → +∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Mathematics-theory Methods and Applications

سال: 2022

ISSN: ['1004-8979', '2079-7338']

DOI: https://doi.org/10.4208/nmtma.oa-2022-0011s