The zeroes of nonnegative holomorphic curvature operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Zeroes of holomorphic functions with almost – periodic modulus Favorov

We give necessary and sufficient conditions for a divisor in a tube domain to be the divisor of a holomorphic function with almost–periodic modulus. Zero distribution for various classes of holomorphic almost–periodic functions in a strip was studied by many authors (cf. The notion of almost–periodic discrete set appeared in [9] and [17] in connection with these investigations. Its generalizati...

متن کامل

Complete Manifolds of Nonnegative Curvature

The purpose of this survey is to give an overview of the results which characterize Riemannian manifolds with nonnegative or positive sectional, Ricci and scalar curvature, putting an emphasis on the differences between these increasingly strong conditions on curvature. All manifolds considered here are assumed to be complete. First we consider how nonnegative curvature is different from positi...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

Pontryagin Numbers and Nonnegative Curvature

We prove that any rational linear combination of Pontryagin numbers that is not a multiple of the signature is unbounded on connected closed oriented manifolds of nonnegative sectional curvature. Combining our result with Gromov’s finiteness result for the signature yields a new characterization of the L-genus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1975

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1975-0405274-9