Thermal charactristics for the flow of Williamson hybrid nanofluid (MoS2 + ZnO) based with engine oil over a streched sheet

نویسندگان

چکیده

The result for enhanced heat transfer to manage increasing density of miniature and several other technical processes have urged analyze thermal transports hybrid nanofluids. Molybdenum disulfide ( MoS 2 ) Zinc oxide ZnO are hybridized as a very dilute homogenous mixture in the bulk engine oil. flow this colloidal fluid with occurs through pours medium over stretching sheet. Moreover, an invariant magnetic field, dissipation, source incorporated. Theoretical formulation resulted as, set non-linear partial differential equations. To obtain numerical solution, similarity transform is hired yield corresponding ordinary Computational software Matlab availed run code Runge-Kutta method shooting technique. A deep insight into problem inspected by varying inputs dependent functions influential parameters. It perceived that speed hindered growing parameters field porosity. also comes know velocity f ?( ? becomes slower augmentation ? but temperature rises. suitable range emerging tried observe variation physical quantities such skin fraction facts, velocity, local Nusselt number, fluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of Thermal Radiation on ‎Mixed Convection MHD Flow of a Casson ‎Nanofluid over an Exponentially Stretching ‎Sheet

   The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions...

متن کامل

Flow of a Williamson Fluid over a Stretching Sheet

In the present article, we have examined the two dimensional flow of Williamson fluid model over a stretching sheet. The governing equations of pseudoplastic Williamson fluid are modelled and then simplified by using similarity transformations and boundary layer approach. The reduced equations are then solved analytically with the help of homotopy analysis method. The physical features of the m...

متن کامل

Thin Film Williamson Nanofluid Flow with Varying Viscosity and Thermal Conductivity on a Time-Dependent Stretching Sheet

This article describes the effect of thermal radiation on the thin film nanofluid flow of a Williamson fluid over an unsteady stretching surface with variable fluid properties. The basic governing equations of continuity, momentum, energy, and concentration are incorporated. The effect of thermal radiation and viscous dissipation terms are included in the energy equation. The energy and concent...

متن کامل

Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Case Studies in Thermal Engineering

سال: 2021

ISSN: ['2214-157X']

DOI: https://doi.org/10.1016/j.csite.2021.101196