Thermal Equilibrium of a Macroscopic Quantum System in a Pure State
نویسندگان
چکیده
منابع مشابه
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.
We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say ...
متن کاملCanonical thermal pure quantum state.
A thermal equilibrium state of a quantum many-body system can be represented by a typical pure state, which we call a thermal pure quantum (TPQ) state. We construct the canonical TPQ state, which corresponds to the canonical ensemble of the conventional statistical mechanics. It is related to the microcanonical TPQ state, which corresponds to the microcanonical ensemble, by simple analytic tran...
متن کاملApproach to thermal equilibrium of macroscopic quantum systems.
We consider an isolated macroscopic quantum system. Let H be a microcanonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+deltaE . The thermal equilibrium macrostate at energy E corresponds to a subspace H(eq) of H such that dim H(eq)/dim H is close to 1. We say that a system with state vector psi...
متن کاملOn the Approach to Thermal Equilibrium of Macroscopic Quantum Systems
In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zangh̀ı [2, 3, 4], we considered an isolated, macroscopic quantum system. Let H be a micro-canonical “energy shell,” i.e., a subspace of the system’s Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E + δE. The thermal equilibrium macrostate at energy E corresponds to a subspace Heq of H such th...
متن کاملA Molecular-Based Equation of State for Vapour-liquid Equilibrium of Pure Substances
A semi-empirical equation of state has been studied for modelling vapour-liquid data of pure substances. The specific molecular based equation of state is employed here as basis because of its mathematical simplicity. The semi-empirical extension has been accomplished to real fluids by correlating the density dependence of the attraction term to vapour liquid data of a reference fluid. The resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2015
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.115.100402