Thermal infrared colorization via conditional generative adversarial network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Diverse Colorization via Generative Adversarial Networks

Colorization of grayscale images is a hot topic in computer vision. Previous research mainly focuses on producing a color image to recover the original one in a supervised learning fashion. However, since many colors share the same gray value, an input grayscale image could be diversely colorized while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse c...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Image Colorization with Generative Adversarial Networks

Over the last decade, the process of automatic colorization had been studied thoroughly due to its vast application such as colorization of grayscale images and restoration of aged and/or degraded images. This problem is highly ill-posed due to the extremely large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involved im...

متن کامل

Conditional Generative Adversarial Nets

Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustr...

متن کامل

Context-conditional Generative Adversarial Networks

We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Infrared Physics & Technology

سال: 2020

ISSN: 1350-4495

DOI: 10.1016/j.infrared.2020.103338