Thermoelectric Power Factor Limit of a 1D Nanowire
                    
                        
                            نویسندگان
                            
                            
                        
                        
                    
                    
                    چکیده
منابع مشابه
Thermoelectric Power Factor of Ultra-Narrow Silicon Nanowires
The thermoelectric performance of materials is determined by the figure of merit ZT=σS2/(κe+κl), where σ is the electrical conductivity, S is the Seebeck coefficient and κe and κl are the electronic and lattice contributions to the thermal conductivity, respectively. The interrelation between these quantities has traditionally kept ZT low, around unity. Nanomaterials have recently attracted sig...
متن کاملThermoelectric Power Factor of Low Dimensional Silicon Nanowires
We analyze the thermoelectric power factor in ultra-narrow low-dimensional silicon nanowires (NWs) by employing atomistic considerations for the electronic structures and linearized Boltzmann transport theory. We consider different transport orientations and both n-type and p-type NWs. We show that the NW properties are highly anisotropic, especially for p-type, and as the diameter is reduced f...
متن کاملHigh Thermoelectric Power Factor of High‐Mobility 2D Electron Gas
Thermoelectric conversion is an energy harvesting technology that directly converts waste heat from various sources into electricity by the Seebeck effect of thermoelectric materials with a large thermopower (S), high electrical conductivity (σ), and low thermal conductivity (κ). State-of-the-art nanostructuring techniques that significantly reduce κ have realized high-performance thermoelectri...
متن کاملThermoelectric Power Factor of Narrow Silicon Nanowires from Atomistic Considerations
Silicon nanowires (NWs) of small diameters have attracted significant attention as efficient thermoelectric materials since the work of Hicks and Dresselhaus [1], who pointed out that low dimensionality can be beneficial to the Seebeck coefficient. The recent results of Boukai et al. [2], and Hochbaum et al. [3] showed that it is indeed possible to achieve ZT~0.5 at room temperature in Si NWs o...
متن کاملEngineering the Thermoelectric Power Factor of Metallic Graphene Nanoribbons
In this work we engineer the thermoelectric (TE) properties of metallic zigzag graphene nanoribbons by the introduction of extended line defects and positively charged substrate impurities. We show that, in such a way, an asymmetry in the transmission of electrons and holes can be created, which allows separation of hot and cold carriers and will provide a very high TE power factor.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2018
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.120.177703