Thermoresponsive Inverted Colloidal Crystal Hydrogel Scaffolds for Lymphoid Tissue Engineering
نویسندگان
چکیده
منابع مشابه
Inverted Colloidal Crystals as Tissue Engineering Scaffolds
Three-dimensional (3D) geometry actively regulates the growth of cells, communication among cells, and interactions between cells and the matrix, as well as cell differentiation pathways. Until now various methods have been utilized to generate a 3D synthetic scaffold, but rarely uniform and ordered structure could be achieved, though it has great advantages. In the course of our study, a new t...
متن کاملRapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds.
Successful regeneration of biological tissues in vitro requires the utilization of three-dimensional (3D) scaffolds that provide a near natural microenvironment for progenitor cells to grow, interact, replicate, and differentiate to form target tissues. In this work, a rapid aqueous photo-polymerization route was developed toward the fabrication of a variety of polymer hydrogel 3D inverted coll...
متن کاملHydrogel scaffolds for tissue engineering: Progress and challenges
Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular...
متن کاملFiber-reinforced hydrogel scaffolds for heart valve tissue engineering.
Heart valve-related disorders are among the major causes of death worldwide. Although prosthetic valves are widely used to treat this pathology, current prosthetic grafts cannot grow with the patient while maintaining normal valve mechanical and hemodynamic properties. Tissue engineering may provide a possible solution to this issue through using biodegradable scaffolds and patients' own cells....
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Healthcare Materials
سال: 2020
ISSN: 2192-2640,2192-2659
DOI: 10.1002/adhm.201901556