Theta functions of quadratic forms over imaginary quadratic fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theta functions of quadratic forms over imaginary quadratic fields

is a modular form of weight n/2 on Γ0(N), where N is the level of Q, i.e. NQ−1 is integral and NQ−1 has even diagonal entries. This was proved by Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the Poisson summation formula to generalize their results for arbitrary n and he also computes the theta multiplier explicitly. Stark [8] gives a different proof by converting θ...

متن کامل

Theta Functions of Indefinite Quadratic Forms over Real Number Fields

We define theta functions attached to indefinite quadratic forms over real number fields and prove that these theta functions are Hilbert modular forms by regarding them as specializations of symplectic theta functions. The eighth root of unity which arises under modular transformations is determined explicitly.

متن کامل

`-adic Representations Associated to Modular Forms over Imaginary Quadratic Fields

Let π be a regular algebraic cuspidal automorphic representation of GL2 over an imaginary quadratic number field K, and let ` be a prime number. Assuming the central character of π is invariant under the non-trivial automorphism of K, it is shown that there is a continuous irreducible `-adic representation ρ of Gal(K/K) such that L(s, ρv) = L(s, πv) whenever v is a prime of K outside an explici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2000

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-92-1-1-9