Three-Component Microseismic Data Denoising Based on Re-Constrain Variational Mode Decomposition
نویسندگان
چکیده
Microseismic monitoring is an important technology used to evaluate hydraulic fracturing, and denoising a crucial processing step. Analyses of the characteristics acquired three-component microseismic data have indicated that vertical component has higher signal-to-noise ratio (SNR) than two horizontal components. Therefore, we propose new method for using re-constrain variational mode decomposition (VMD). In this method, it assumed there linear relationship between modes with same center frequency among VMD results data. Then, result as constraint whole effect On basis VMD, add condition form deduce corresponding solution process. According synthesis analysis, proposed can not only improve SNR level records, also improves accuracy polarization analysis. The achieved satisfactory field
منابع مشابه
Empirical Mode Decomposition Based Denoising Techniques
One of the most challenging tasks for which EMD could be useful is that of non-parametric signal denoising, an area in which wavelet thresholding has been the dominant technique for many years. In this paper, the major wavelet thresholding principle is used in the decomposition modes resulting from applying EMD to a signal. We show, that although a direct application of this principle in the EM...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملDenoising via Empirical Mode Decomposition
In this paper a signal denoising scheme based a multiresolution approach referred to as Empirical mode decomposition (EMD) [1] is presented. The denoising method is a fully data driven approach. Noisy signal is decomposed adaptively into intrinsic oscillatory components called Intrinsic mode functions (IMFs) using a decomposition algorithm algorithm called sifting process. The basic principle o...
متن کاملResearch on Ship-Radiated Noise Denoising Using Secondary Variational Mode Decomposition and Correlation Coefficient
As the sound signal of ships obtained by sensors contains other many significant characteristics of ships and called ship-radiated noise (SN), research into a denoising algorithm and its application has obtained great significance. Using the advantage of variational mode decomposition (VMD) combined with the correlation coefficient for denoising, a hybrid secondary denoising algorithm is propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app112210943