Tight Closure and Graded Integral Extensions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Closure in Graded Rings

This paper facilitates the computation of tight closure by giving giving upper and lower bounds on the degrees of elements that need to be checked for inclusion in the tight closure of certain homogeneous ideals in a graded ring. Differential operators are introduced to the study of tight closure, and used to prove that the degree of any element in the tight closure of a homogeneous ideal (but ...

متن کامل

Separable integral extensions and plus closure

We show that an excellent local domain of characteristic p has a separable big Cohen–Macaulay algebra. In the course of our work we prove that an element which is in the Frobenius closure of an ideal can be forced into the expansion of the ideal to a module-finite separable extension ring.

متن کامل

Lefschetz Extensions, Tight Closure, and Big Cohen-macaulay Algebras

We associate to every equicharacteristic zero Noetherian local ring R a faithfully flat ring extension which is an ultraproduct of rings of various prime characteristics, in a weakly functorial way. Since such ultraproducts carry naturally a non-standard Frobenius, we can define a new tight closure operation on R by mimicking the positive characteristic functional definition of tight closure. T...

متن کامل

Tight Closure of Finite Length Modules in Graded Rings

In this article, we look at how the equivalence of tight closure and plus closure (or Frobenius closure) in the homogeneous m-coprimary case implies the same closure equivalence in the non-homogeneous m-coprimary case in standard graded rings. Although our result does not depend upon dimension, the primary application is based on results known in dimension 2 due to the recent work of H. Brenner...

متن کامل

Graded Transcendental Extensions of Graded Fields

We study transcendency properties for graded field extension and give an application to valued field extensions. 1. Introduction. An important tool to study rings with valuation is the so-called associated graded ring construction: to a valuation ring R, we can associate a ring gr(R) graded by the valuation group. This ring is often easier to study, and one tries to lift properties back from gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1995

ISSN: 0021-8693

DOI: 10.1006/jabr.1995.1201