Tight Estimates for Eigenvalues of Regular Graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight estimates for eigenvalues of regular graphs

It is shown that if a d-regular graph contains s vertices so that the distance between any pair is at least 4k, then its adjacency matrix has at least s eigenvalues which are at least 2 √ d − 1 cos( π 2k ). A similar result has been proved by Friedman using more sophisticated tools.

متن کامل

Regular Factors of Regular Graphs from Eigenvalues

Let r and m be two integers such that r > m. Let H be a graph with order |H|, size e and maximum degree r such that 2e > |H|r−m. We find a best lower bound on spectral radius of graph H in terms of m and r. Let G be a connected r-regular graph of order |G| and k < r be an integer. Using the previous results, we find some best upper bounds (in terms of r and k) on the third largest eigenvalue th...

متن کامل

Tight Distance-Regular Graphs

We consider a distance regular graph with diameter d and eigenvalues k d We show the intersection numbers a b satisfy k a d k a ka b a We say is tight whenever is not bipartite and equality holds above We charac terize the tight property in a number of ways For example we show is tight if and only if the intersection numbers are given by certain rational expressions involving d independent para...

متن کامل

On the extreme eigenvalues of regular graphs

In this paper, we present an elementary proof of a theorem of Serre concerning the greatest eigenvalues of k-regular graphs. We also prove an analogue of Serre’s theorem regarding the least eigenvalues of k-regular graphs: given > 0, there exist a positive constant c = c( , k) and a nonnegative integer g = g( , k) such that for any k-regular graph X with no odd cycles of length less than g, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2004

ISSN: 1077-8926

DOI: 10.37236/1850