Time delay for one-dimensional quantum systems with steplike potentials
نویسندگان
چکیده
منابع مشابه
Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Periodic Potentials
We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap periodic potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.
متن کاملInverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Finite-gap Potentials
We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.
متن کاملFinite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay
In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...
متن کاملReconstruction of Steplike Potentials
In this article we study some numerical methods for the determination of a potential V (x) in the one dimensional Schrödinger equation. We assume that V (x) = 0 for x < 0, and tends to a nonnegative constant as x tends to positive infinity. We suppose also that there are no bound states. The approach pursued here is a based on a transformation to an equivalent ‘time domain’ problem, namely the ...
متن کاملPotentials for One - Dimensional
We discuss restrictions of two-dimensional translation-invariant Gibbs measures to a one-dimensional layer. We prove that there exists a translation invariant a.s. absolutely convergent potential making these restrictions into weakly Gibbsian measures. We discuss the existence of the thermodynamic functions for this potential and the variational principle for the weakly Gibbsian measures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2007
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.75.022106