Time delay induced Hopf bifurcation in a diffusive predator–prey model with prey toxicity
نویسندگان
چکیده
Abstract In this paper, we consider a diffusive predator–prey model with time delay and prey toxicity. The effect of on the stability positive equilibrium is studied by analyzing eigenvalue spectrum. Delay-induced Hopf bifurcation also investigated. By utilizing normal form method center manifold reduction for partial functional differential equations, formulas determining property are given.
منابع مشابه
Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملPersistence, Stability and Hopf Bifurcation in a Diffusive Ratio-Dependent Predator-Prey Model with Delay
In this paper, we study the persistence, stability and Hopf bifurcation in a ratio-dependent predator–prey model with diffusion and delay. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system and global stability of the boundary equilibrium. The local stability of the positive constant equilibrium and delay-induced Hopf bifurcation are investig...
متن کاملHopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting∗
Abstract. In this paper, we investigated the dynamics of a diffusive delayed predator-prey system with Holling type II functional response and nozero constant prey harvesting on no-flux boundary condition. At first, we obtain the existence and the stability of the equilibria by analyzing the distribution of the roots of associated characteristic equation. Using the time delay as the bifurcation...
متن کاملDelay Induced Subcritical Hopf Bifurcation in a Diffusive Predator-prey Model with Herd Behavior and Hyperbolic Mortality∗
In this paper, we consider the dynamics of a delayed diffusive predator-prey model with herd behavior and hyperbolic mortality under Neumann boundary conditions. Firstly, by analyzing the characteristic equations in detail and taking the delay as a bifurcation parameter, the stability of the positive equilibria and the existence of Hopf bifurcations induced by delay are investigated. Then, appl...
متن کاملStability and Hopf Bifurcation in a Diffusive Predator-Prey System with Beddington-DeAngelis Functional Response and Time Delay
and Applied Analysis 3 Under A1 , let u u − u∗, v v − v∗ and drop the bars for simplicity of notations, then 1.1 can be transformed into the following equivalent system: ut d1Δu t, x u u∗ 1 − u t − τ, x u∗ − s u u ∗ v v∗ m u u∗ n v v∗ , vt d2Δv t, x r u u∗ v v∗ m u u∗ n v v∗ − d v v∗ . 2.2 Let P u, v uv/ m u nv . By u∗ 1 − u∗ − su∗v∗/ m u∗ nv∗ 0 and −dv∗ ru∗v∗/ m u∗ nv∗ 0 2.2 becomes ut d1Δu t,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2021
ISSN: ['1687-1839', '1687-1847']
DOI: https://doi.org/10.1186/s13662-020-03161-3