Time-series estimation from randomly time-warped observations

نویسندگان

چکیده

• We consider the problem of estimating a signal given randomly time warped observations signal. Many existing methods rely on unknown warps, computationally challenging problem. propose scalable method based interpreting as samples manifold. search for ’center’ manifold, by resorting to techniques from graph/network processing. demonstrate that number required is not exceedingly high practical scenarios. its observations. Such estimation commonly performed altering through some inverse-warping, or solving demanding optimization formulation . While these may be unavoidable if are few, when large amounts available, cost running such algorithms can prohibitive. scenario where we have many observations, and simple algorithm function interest. utility streaming biomedical signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tidal prediction using time series analysis of Buoy observations

Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...

متن کامل

Warped-Linear Models for Time Series Classification

This article proposes and studies warped-linear models for time series classification. The proposed models are time-warp invariant analogues of linear models. Their construction is in line with time series averaging and extensions of k-means and learning vector quantization to dynamic time warping (DTW) spaces. The main theoretical result is that warped-linear models correspond to polyhedral cl...

متن کامل

Spectral Estimation of Stationary Time Series: Recent Developments

Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...

متن کامل

Spectral estimation for locally stationary time series with missing observations

Time series arising in practice often have an inherently irregular sampling structure or missing values, that can arise for example due to a faulty measuring device or complex time-dependent nature. Spectral decomposition of time series is a traditionally useful tool for data variability analysis. However, existing methods for spectral estimation often assume a regularly-sampled time series, or...

متن کامل

Nonparametric HAC Estimation for Time Series Data With Missing Observations

The Newey and West (1987) estimator has become the standard way to estimate a heteroskedasticity and autocorrelation consistent (HAC) covariance matrix, but it does not immediately apply to time series with missing observations. We demonstrate that the intuitive approach to estimate the true spectrum of the underlying process using only the observed data leads to incorrect inference. Instead, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2022

ISSN: ['1872-7344', '0167-8655']

DOI: https://doi.org/10.1016/j.patrec.2022.04.020