Topology optimization for multi-axis machining
نویسندگان
چکیده
منابع مشابه
Kinematical performance prediction in multi-axis machining for process planning optimization
This paper deals with a predictive model of kinematical performance in 5-axis milling within the context of High Speed Machining. Indeed, 5-axis high speed milling makes it possible to improve quality and productivity thanks to the degrees of freedom brought by the tool axis orientation. The tool axis orientation can be set efficiently in terms of productivity by considering kinematical constra...
متن کاملModel for performance prediction in multi-axis machining
This paper deals with a predictive model of kinematical performance in 5-axis milling within the context of High Speed Machining. Indeed, 5-axis high speed milling makes it possible to improve quality and productivity thanks to the degrees of freedom brought by the tool axis orientation. The tool axis orientation can be set efficiently in terms of productivity by considering kinematical constra...
متن کاملFuzzy Linguistic Optimization on Multi-Attribute Machining
Most existing multi-attribute optimization researches for the modern CNC (computer numerical control) turning industry were either accomplished within certain manufacturing circumstances, or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme proposed is deemed to be necessary for the industry. In this paper, four parameters (cutting depth, feed ra...
متن کامل3D level-set topology optimization: a machining feature-based approach
This paper presents an explicit feature-based levelset topology optimization method involving polyline-arc profiling and 2.5D machining processes. This method relies on a feature fitting algorithm incorporated into the boundary evolvement process in order to regulate the noisy velocity fields and thus introduce new explicit feature primitives; once inserted, the feature-based shape optimization...
متن کاملPrecise global collision detection in multi-axis NC-machining
We introduce a new approach to the problem of collision detection in multi-axis NC-machining. Due to the directional nature (tool axis) of multi-axis NC-machining, space subdivision techniques are adopted from ray-tracing algorithms and extended to suit the peculiarities of the problem in hand. We exploit the axial-symmetry inherent in the tool's rotational motion to derive a highly precise pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2019
ISSN: 0045-7825
DOI: 10.1016/j.cma.2019.03.037