Towards adaptivity via a new discrepancy principle for Poisson inverse problems
نویسندگان
چکیده
A new form of the discrepancy principle for Poisson inverse problems with compact operators is proposed and discussed in relation to various other proposals. It shown that filter-induced spectral regularization a priori chosen smoothing parameter produces estimators are rate-minimax under source conditions on estimated function. With used posteriori choice parameter, solutions consistent (in probability), but convergence rates suboptimal, at least finitely case, which often happens when principles stochastic problems. Finite sample performance procedure applied stereological problem Spektor, Lord Willis illustrated simulation experiment.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA new discrepancy principle
The aim of this note is to prove a new discrepancy principle. The advantage of the new discrepancy principle compared with the known one consists of solving a minimization problem (see problem (2) below) approximately, rather than exactly, and in the proof of a stability result. To explain this in more detail, let us recall the usual discrepancy principle, which can be stated as follows. Consid...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملPoisson Inverse Problems
In this paper, we fo us on nonparametri estimators in inverse problems for Poisson pro esses involving the use of wavelet de ompositions. Adopting an adaptive wavelet Galerkin dis retization we nd that our method ombines the well know theoreti al advantages of wavelet-vaguelette de ompositions for inverse problems in terms of optimally adapting to the unknown smoothness of the solution, togethe...
متن کاملOn the discrepancy principle for some Newton type methods for solving nonlinear inverse problems
We consider the computation of stable approximations to the exact solution x† of nonlinear ill-posed inverse problems F(x) = y with nonlinear operators F : X → Y between two Hilbert spaces X and Y by the Newton type methods xk+1 = x0 −gαk (
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2021
ISSN: ['1935-7524']
DOI: https://doi.org/10.1214/21-ejs1835