Towards an Online Seizure Advisory System—An Adaptive Seizure Prediction Framework Using Active Learning Heuristics
نویسندگان
چکیده
منابع مشابه
A gradient-based adaptive learning framework for online seizure prediction
Most of the current epileptic seizure prediction algorithms require much prior knowledge of a patient’s pre-seizure electroencephalogram (EEG) patterns. They are impractical to be applied to a wide range of patients due to a very high inter-individual variability of EEG patterns. This paper proposes an adaptive prediction framework, which is capable of accumulating knowledge of pre-seizure EEG ...
متن کاملThe seizure prediction characteristic: a general framework to assess and compare seizure prediction methods.
The unpredictability of seizures is a central problem for all patients suffering from uncontrolled epilepsy. Recently, numerous methods have been suggested that claim to predict from the EEG the onset of epileptic seizures. In parallel, new therapeutic devices are in development that could control upcoming seizures provided that their onset is known in advance. A reliable clinical application c...
متن کاملEpileptic Seizure Prediction: An overview
Epilepsy is a neurological disorder marked by sudden recurrent episodes of sensory disturbance, loss of consciousness, or convulsions, associated with abnormal electrical activity in the brain. The sudden and seemingly unpredictable nature of seizures is one of the most compromising aspects of the disease epilepsy. Most epilepsy patients only spend a marginal part of their time actually having ...
متن کاملEpileptic Seizure Prediction Using Hybrid Feature Selection
A comprehensive research of Electroencephalography (EEG) is carried out on Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) domains. In this scenario, the hybrid feature extraction is performed by utilizing entropy features like Shannon entropy, log-energy entropy and Renyi entropy. Generally, the entropy measures are effective in evaluation of non-linear interrelation an...
متن کاملSeizure prediction using EEG spatiotemporal correlation structure
A seizure prediction algorithm is proposed that combines novel multivariate EEG features with patient-specific machine learning. The algorithm computes the eigenspectra of space-delay correlation and covariance matrices from 15-s blocks of EEG data at multiple delay scales. The principal components of these features are used to classify the patient's preictal or interictal state. This is done u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2018
ISSN: 1424-8220
DOI: 10.3390/s18061698