Towards Hilbert’s tenth problem for rings of integers through Iwasawa theory and Heegner points

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert’s Tenth Problem over Rings of Integers of Number Fields

This is a term paper for Thomas Scanlon’s Math 229, Model Theory, at UC Berkeley, Fall 2006. The goal of this survey is to understand Bjorn Poonen’s theorem about elliptic curves and Hilbert’s Tenth problem over rings of integers of number fields and to record and exposit a few ideas which may be useful in an attack with Poonen’s theorem as a starting point.

متن کامل

Plus/minus Heegner Points and Iwasawa Theory of Elliptic Curves at Supersingular Primes

Let E be an elliptic curve over Q and let p ≥ 5 be a prime of good supersingular reduction for E. Let K be an imaginary quadratic field satisfying a modified “Heegner hypothesis” in which p splits, write K∞ for the anticyclotomic Zp-extension of K and let Λ denote the Iwasawa algebra of K∞/K. By extending to the supersingular case the Λ-adic Kolyvagin method originally developed by Bertolini in...

متن کامل

Heegner Points and Representation Theory

Our aim in this paper is to present a framework in which the results of Waldspurger and Gross–Zagier can be viewed simultaneously. This framework may also be useful in understanding recent work of Zhang, Xue, Cornut, Vatsal, and Darmon. It involves a blending of techniques from representation theory and automorphic forms with those from the arithmetic of modular curves. I hope readers from one ...

متن کامل

Using Elliptic Curves of Rank One towards the Undecidability of Hilbert's Tenth Problem over Rings of Algebraic Integers

Let F ⊆ K be number fields, and let OF and OK be their rings of integers. If there exists an elliptic curve E over F such that rkE(F ) = rkE(K) = 1, then there exists a diophantine definition of OF over OK .

متن کامل

Sylvester’s Problem and Mock Heegner Points

We prove that if p ≡ 4, 7 (mod 9) is prime and 3 is not a cube modulo p, then both of the equations x + y = p and x + y = p have a solution with x, y ∈ Q.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2020

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-020-01991-w