Towards Unsupervised and Consistent High Dimensional Data Clustering
نویسندگان
چکیده
منابع مشابه
Towards Unsupervised and Consistent High Dimensional Data Clustering
The boosted demand for immense information, the enhanced data acquisition and so do the size and number of dimensions of data is a big challenge for the data mining algorithms. Clustering exercise to collect the data with same characteristics together, for better performance of knowledge based systems. High dimensional and large size data results in declined performance of existing clustering a...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملUnsupervised clustering algorithm for N-dimensional data.
Cluster analysis is an important tool for classifying data. Established techniques include k-means and k-median cluster analysis. However, these methods require the user to provide a priori estimations of the number of clusters and their approximate location in the parameter space. Often these estimations can be made based on some prior understanding about the nature of the data. Alternatively,...
متن کاملHigh-dimensional data clustering
Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example in image analysis. The difficulty is due to the fact that highdimensional data usually live in different low-dimensional subspaces hidden in the original space. This paper presents a family of Gaussian mixture models designed for highdimensional data which combine the ideas of subspace c...
متن کاملGraph Based Models for Unsupervised High Dimensional Data Clustering and Network Analysis
of the Dissertation Graph Based Models for Unsupervised High Dimensional Data Clustering and Network Analysis
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2014
ISSN: 0975-8887
DOI: 10.5120/15183-3532