Trace formulas for non-self-adjoint periodic Schrödinger operators and some applications
نویسندگان
چکیده
منابع مشابه
Non-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملSome results on non-self-adjoint operators, a survey
This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...
متن کاملNon-Self-Adjoint Operators and Pseudospectra
The theory of pseudospectra has grown rapidly since its emergence from within numerical analysis around 1990. We describe some of its applications to the stability theory of differential operators, to WKB analysis and even to orthogonal polynomials. Although currently more a way of looking at non-self-adjoint operators than a list of theorems, its future seems to be assured by the growing numbe...
متن کاملThe Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions
In this paper has been studied the wave equation in some non-classic cases. In the rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...
متن کاملFull asymptotic expansion of the heat trace for non–self–adjoint elliptic cone operators
The operator e−tA and the heat trace Tr e−tA, for t > 0, are investigated in the case when A is an elliptic differential operator on a manifold with conical singularities. Under a certain spectral condition (parameter–ellipticity) we obtain a full asymptotic expansion in t of the heat trace as t → 0+. As in the smooth compact case, the problem is reduced to the investigation of the resolvent (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2004
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2004.06.024