Traces of weighted Sobolev spaces with Muckenhoupt weight. The casep=1

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications

We develop a constructive piecewise polynomial approximation theory in 1 weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The 2 main ingredients to derive optimal error estimates for an averaged Taylor polynomial 3 are a suitable weighted Poincaré inequality, a cancellation property and a simple 4 induction argument. We also construct a quasi-interpolation operator, b...

متن کامل

Traces of weighted Sobolev spaces. Old and new

We give short simple proofs of Uspenskii’s results characterizing Besov spaces as trace spaces of weighted Sobolev spaces. We generalize Uspenskii’s results and prove the optimality of these generalizations. We next show how classical results on the functional calculus in the Besov spaces can be obtained as straightforward consequences of the theory of weighted Sobolev spaces.

متن کامل

Traces of vector-valued Sobolev Spaces

The aim of the paper is to characterize the trace space of vector-valued Sobolev spaces W p (R , E) , where E is an arbitrary Banach space. In particular, we do not assume that the underlying Banach space E has the UMD property. Vector-valued Sobolev and Besov spaces are widely used in abstract evolution equations, cf. e.g. Amann [1, 2, 4], Veraar and Weis [57] or Denk, Hieber, Prüss, Saal, and...

متن کامل

The Kawahara equation in weighted Sobolev spaces

Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...

متن کامل

Traces for Fractional Sobolev Spaces with Variable Exponents

In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p : Ω × Ω → (1,∞) and q : ∂Ω→ (1,∞) are continuous functions such that (n− 1)p(x, x) n− sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n− sp(x, x) > 0}, then the inequality ‖f‖Lq(·)(∂Ω) ≤ C { ‖f‖Lp̄(·)(Ω) + [f ]s,p(·,·) } holds. Here p̄(x) = p(x, x) and [f ]s,p(·,·) denotes the fractional semi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2015

ISSN: 0362-546X

DOI: 10.1016/j.na.2015.08.001