Trainlets: Dictionary Learning in High Dimensions
نویسندگان
چکیده
منابع مشابه
Nonparametric Learning in High Dimensions
This thesis develops flexible and principled nonparametric learning algorithms to explore, understand, and predict high dimensional and complex datasets. Such data appear frequently in modern scientific domains and lead to numerous important applications. For example, exploring high dimensional functional magnetic resonance imaging data helps us to better understand brain functionalities; infer...
متن کاملLearning Single Index Models in High Dimensions
Single Index Models (SIMs) are simple yet flexible semi-parametric models for classification and regression. Response variables are modeled as a nonlinear, monotonic function of a linear combination of features. Estimation in this context requires learning both the feature weights, and the nonlinear function. While methods have been described to learn SIMs in the low dimensional regime, a metho...
متن کاملLearning in high dimensions: modular mixture models
We present a new approach to learning probabilistic models for high dimensional data. This approach divides the data dimensions into low dimensional subspaces, and learns a separate mixture model for each subspace. The models combine in a principled manner to form a flexible modular network that produces a total density estimate. We derive and demonstrate an iterative learning algorithm that us...
متن کاملLearning to Search Efficiently in High Dimensions
High dimensional similarity search in large scale databases becomes an important challenge due to the advent of Internet. For such applications, specialized data structures are required to achieve computational efficiency. Traditional approaches relied on algorithmic constructions that are often data independent (such as Locality Sensitive Hashing) or weakly dependent (such as kd-trees, k-means...
متن کاملIncremental Online Learning in High Dimensions
Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high-dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally efficient and numerically robust, each local model performs the regression analysis with a small n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2016
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2016.2540599