Transfer Learning for Segmenting Dimensionally Reduced Hyperspectral Images
نویسندگان
چکیده
منابع مشابه
Unsupervised transfer learning for target detection from hyperspectral images
Target detection has been of great interest in hyperspectral image analysis. Feature extraction from target samples and counterpart backgrounds consist the key to the problem. Traditional target detection methods depend on comparatively fixed feature for all the pixels under observation. For example, RX employs the same distance measurement for all the pixels. However, the best separation resul...
متن کاملLearning Classifier Systems for Hyperspectral Images Processing
In this article, two learning classifier system based classification techniques are described to classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, generating simple and robust rules. The second approach applies the real-valued accuracy-based classifi...
متن کاملUnsupervised Geometric Learning of Hyperspectral Images
The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically segmenting and clustering hyperspectral images. In this article, we propose an unsupervised learning technique that combin...
متن کاملClassifying and segmenting microscopy images with deep multiple instance learning
MOTIVATION High-content screening (HCS) technologies have enabled large scale imaging experiments for studying cell biology and for drug screening. These systems produce hundreds of thousands of microscopy images per day and their utility depends on automated image analysis. Recently, deep learning approaches that learn feature representations directly from pixel intensity values have dominated...
متن کاملSegmenting Dermoscopic Images
We propose an automatic algorithm, named SDI, for the segmentation of skin lesions in dermoscopic images, articulated into three main steps: selection of the image ROI, selection of the segmentation band, and segmentation. We present extensive experimental results achieved by the SDI algorithm on the lesion segmentation dataset made available for the ISIC 2017 challenge on Skin Lesion Analysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2020
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2019.2942832