Transfer Learning with Dynamic Distribution Adaptation
نویسندگان
چکیده
منابع مشابه
Deep Transfer Learning with Joint Adaptation Networks
Deep networks rely on massive amounts of labeled data to learn powerful models. For a target task short of labeled data, transfer learning enables model adaptation from a different source domain. This paper addresses deep transfer learning under a more general scenario that the joint distributions of features and labels may change substantially across domains. Based on the theory of Hilbert spa...
متن کاملInstance Transfer Learning with Multisource Dynamic TrAdaBoost
Since the transfer learning can employ knowledge in relative domains to help the learning tasks in current target domain, compared with the traditional learning it shows the advantages of reducing the learning cost and improving the learning efficiency. Focused on the situation that sample data from the transfer source domain and the target domain have similar distribution, an instance transfer...
متن کاملDomain Adaptation and Transfer Learning in StochasticNets
Transfer learning is a recent field of machine learning research that aims to resolve the challenge of dealing with insufficient training data in the domain of interest. This is a particular issue with traditional deep neural networks where a large amount of training data is needed. Recently, StochasticNets was proposed to take advantage of sparse connectivity in order to decrease the number of...
متن کاملCase Study of Model Adaptation: Transfer Learning and Online Learning
Many NLP tools are released as programs that include statistical models. Unfortunately, the models do not always match the documents that the tool user is interested in, which forces the user to update the models. In this paper, we investigate model adaptation under the condition that users cannot access the data used in creating the original model. Transfer learning and online learning are inv...
متن کاملAdaptation in E-Learning Content Specifications with Dynamic Sharable Objects
Dynamic sophisticated real-time adaptation is not possible with current e-learning technologies. Our proposal is based on changing the approach for the development of e-learning systems using dynamic languages and including them in both platforms and learning content specifications thereby making them adaptive. We propose a Sharable Auto-Adaptive Learning Object (SALO), defined as an object tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Intelligent Systems and Technology
سال: 2020
ISSN: 2157-6904,2157-6912
DOI: 10.1145/3360309