Transitive Factorizations in the Symmetric Group, and Combinatorial Aspects of Singularity Theory
نویسندگان
چکیده
منابع مشابه
Transitive Factorizations in the Symmetric Group, and Combinatorial Aspects of Singularity Theory
We consider the determination of the number ck (α) of ordered factorizations of an arbitrary permutation on n symbols, with cycle distribution α, into k-cycles such that the factorizations have minimal length and the group generated by the factors acts transitively on the n symbols. The case k = 2 corresponds to the celebrated result of Hurwitz on the number of topologically distinct holomorphi...
متن کاملCombinatorial Constructions for Transitive Factorizations in the Symmetric Group
We consider the problem of counting transitive factorizations of permutations; that is, we study tuples (σr , . . . , σ1) of permutations on {1, . . . , n} such that (1) the product σr · · · σ1 is equal to a given target permutation π , and (2) the group generated by the factors σi acts transitively on {1, . . . , n}. This problem is widely known as the Hurwitz Enumeration Problem, since an enc...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولm at h . C O / 9 90 30 94 16 M ar 1 99 9 Transitive factorisations in the symmetric group , and combinatorial aspects of singularity theory ∗
Transitive factorisations in the symmetric group, and combinatorial aspects of singularity theory * Abstract We consider the determination of the number c k (α) of ordered factorisations of an arbitrary permutation on n symbols, with cycle distribution α, into k-cycles such that the factorisations have minimal length and such that the group generated by the factors acts transitively on the n sy...
متن کاملTransitive Factorizations in the Hyperoctahedral Group
The classical Hurwitz Enumeration Problem has a presentation in terms of transitive factorisations in the symmetric group. This presentation suggests a generalization from type A to other £nite re¤ection groups and, in particular, to type B. We study this generalization both from a combinatorial and a geometric point of view, with the prospect of providing a means of understanding more of the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2000
ISSN: 0195-6698
DOI: 10.1006/eujc.2000.0409