Transitive large sets of disjoint decompositions and group sequencings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transitive large sets of disjoint decompositions and group sequencings

Let n¿ 3 be an integer, and let k denote either n or n − 1. A large set of disjoint decompositions of K∗ n (Kn) into cycles of length k (denoted by k-LSD), is a partition of the set of all cycles of length k in K∗ n (Kn) into disjoint decompositions of K ∗ n (Kn) (i.e., any two decompositions have no k-cycle in common). Such a large set is transitive, if there exists a permutation group on the ...

متن کامل

Further results on large sets of disjoint group-divisible designs

Chen, D., CC. Lindner and D.R. Stinson, Further results on large sets of disjoint group-divisible designs, Discrete Mathematics 110 (1992) 35-42. This paper is a continuation of a recent paper by Chen and Stinson, where some recursive constructions for large sets of group-divisible design with block size 3 arc presented. In this paper, we give two new recursive constructions. In particular, we ...

متن کامل

A Completion of the Spectrum for Large Sets of Disjoint Transitive Triple Systems

In what follows, an ordered pair will always be an ordered pair (x, y), where x # y. A transitive triple is a collection of three ordered pairs of the form (6, Y), (Y, z), (x, z)}, which we will always denote by (x, y, z). A transitive triple system (TTS(u)) is a pair (X, B), where X is a set containing v elements and B is a collection of transitive triples of elements of X such that every orde...

متن کامل

Large sets of disjoint t-designs

[u this paper, we show how the basis reduction algorithm of Kreher and Radziszowski can be used to construct large sets of disjoint designs with specified automorphisms. In particular, we construct a (3,4,23;4)large set which rise to an infinite family of large sets of 4-desiglls via a result of Teirlinck [6].

متن کامل

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2002

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(01)00434-4