TRF1 interacts with XRCC4 and XLF at telomeres
نویسندگان
چکیده
منابع مشابه
Role of XRCC4 and XLF in NHEJ Resolving how XRCC4 and XLF interact with DNA and what functions
Non-Homologous End Joining (NHEJ) is an efficient mechanism to repair DNA double-strand breaks. XRCC4 and XLF are two structurally-similar core NHEJ proteins. They can directly interact at the protein-protein level and engage DNA by an unknown mechanism. Here, we use optical tweezers and fluorescence microscopy to visualize XRCC4XLF complexes on DNA in real time. We find that the behavior of XR...
متن کاملXLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining
DNA nonhomologous end-joining (NHEJ) is a predominant pathway of DNA double-strand break repair in mammalian cells, and defects in it cause radiosensitivity at the cellular and whole-organism levels. Central to NHEJ is the protein complex containing DNA Ligase IV and XRCC4. By searching for additional XRCC4-interacting factors, we identified a previously uncharacterized 33 kDa protein, XRCC4-li...
متن کاملA human XRCC4–XLF complex bridges DNA
DNA double-strand breaks pose a significant threat to cell survival and must be repaired. In higher eukaryotes, such damage is repaired efficiently by non-homologous end joining (NHEJ). Within this pathway, XRCC4 and XLF fulfill key roles required for end joining. Using DNA-binding and -bridging assays, combined with direct visualization, we present evidence for how XRCC4-XLF complexes robustly...
متن کاملCrystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ
The recently characterised 299-residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non-homologous end joining (NHEJ) and interacts with the XRCC4-DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1-233) homodimer at 2.3 A resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled-coil, however, is shorter than that of XRCC4 a...
متن کاملXRCC4's interaction with XLF is required for coding (but not signal) end joining
XRCC4 and XLF are structurally related proteins important for DNA Ligase IV function. XRCC4 forms a tight complex with DNA Ligase IV while XLF interacts directly with XRCC4. Both XRCC4 and XLF form homodimers that can polymerize as heterotypic filaments independently of DNA Ligase IV. Emerging structural and in vitro biochemical data suggest that XRCC4 and XLF together generate a filamentous st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2013
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.27.1_supplement.758.7