Trigonometric wavelet method for some elliptic boundary value problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems

In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...

متن کامل

On Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations

We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem  −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...

متن کامل

Boundary Value Problems for some Fully Nonlinear Elliptic Equations

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 with boundary ∂M . We denote the Ricci curvature, scalar curvature, mean curvature, and the second fundamental form by Ric, R , h, and Lαβ , respectively. The Yamabe problem for manifolds with boundary is to find a conformal metric ĝ = eg such that the scalar curvature is constant and the mean curvature is zero. The boundary is call...

متن کامل

Elliptic Boundary-Value Problems

In the first part of this chapter we focus on the question of well-posedness of boundary-value problems for linear partial differential equations of elliptic type. The second part is devoted to the construction and the error analysis of finite difference schemes for these problems. It will be assumed throughout that the coefficients in the equation, the boundary data and the resulting solution ...

متن کامل

A Multiplicative Schwarz Adaptive Wavelet Method for Elliptic Boundary Value Problems

A multiplicative Schwarz overlapping domain decomposition method is considered for solving elliptic boundary value problems. By equipping the relevant Sobolev spaces on the subdomains with wavelet bases, adaptive wavelet methods are used for approximately solving the subdomain problems. The union of the wavelet bases forms a frame for the Sobolev space on the domain as a whole. The resulting me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2008.03.062