Trimetallic Metal?Organic Framework Nanoframe Superstructures: A Stress?Buffering Architecture Engineering of Anode Material toward Boosted Lithium Storage Performance

نویسندگان

چکیده

Metal-organic frameworks (MOFs) can serve as prevailing anodes for lithium-ion batteries, due to their multiple redox-active sites and prominent structural compatibility. However, the poor electronic conductivity inferior cyclability hinder further implementation. Herein, a synthetic methodology trimetallic Fe-Co-Ni MOFs with nanoframe superstructures architecture (Fe-Co-Ni NFSs) via evolution is proposed versatile anode materials lithium storage. Ascribed optimal compositional optimization, NFSs achieve exceptional electrochemical performance superior specific capacity (1030 mAh g?1 at 0.1 A g?1), outstanding rate (414 2 prolonged (489 upon 1000 cycles 1 g?1). Both experimental theoretical investigations reveal that multi-component metal centers could boost conductivity, confer active sites, energetically favor Li adsorption capability. Additionally, of facilitate stress-buffering effect on volumetric expansion prevent electrode pulverization, improving storage This work envisions meticulous protocol high-performance MOF batteries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries.

Rechargeable lithium-ion batteries are essential to portable electronic devices. Owing to the rapid development of such equipment there is an increasing demand for lithium-ion batteries with high energy density and long cycle life. For high energy density, the electrode materials in the lithium-ion batteries must possess high specific storage capacity and coulombic efficiency. Graphite and LiCo...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Reconstruction of Mini‐Hollow Polyhedron Mn2O3 Derived from MOFs as a High‐Performance Lithium Anode Material

A mini-hollow polyhedron Mn2O3is used as the anode material for lithium-ion batteries. Benefiting from the small interior cavity and intrinsic nanosize effect, a stable reconstructed hierarchical nanostructure is formed. It has excellent energy storage properties, exhibiting a capacity of 760 mAh g-1 at 2 A g-1 after 1000 cycles. This finding offers a new perspective for the design of electrode...

متن کامل

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

A Novel Graphene-Polysulfide Anode Material for High-Performance Lithium-Ion Batteries

We report a simple and efficient approach for fabrication of novel graphene-polysulfide (GPS) anode materials, which consists of conducting graphene network and homogeneously distributed polysulfide in between and chemically bonded with graphene sheets. Such unique architecture not only possesses fast electron transport channels, shortens the Li-ion diffusion length but also provides very effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy & environmental materials

سال: 2022

ISSN: ['2575-0348', '2575-0356']

DOI: https://doi.org/10.1002/eem2.12284