TRUNCATIONS OF $L$-FUNCTIONS IN RESIDUE CLASSES
نویسندگان
چکیده
منابع مشابه
Polynomial Functions over Rings of Residue Classes of Integers
In this thesis we discuss how to find equivalent representations of polynomial functions over the ring of integers modulo a power of a prime. Specifically, we look for lower degree representations and representations with fewer variables for which important applications in electrical and computer engineering exist. We present several algorithms for finding these compact formulations. INDEX WORD...
متن کاملfocus on communication in iranian high school language classes: a study of the role of teaching materials in changing the focus onto communication in language classes
چکیده ارتباط در کلاس به عوامل زیادی از جمله معلمان، دانش آموزان، برنامه های درسی و از همه مهم تر، مواد آموزشی وابسته است. در تدریس ارتباطی زبان که تاکید زیادی بر توانش ارتباطی دارد، کتاب درسی به عنوان عامل موثر بر پویایی کلاس محسوب میگردد که درس ها را از طریق فراهم آوردن متن ارتباط کلاسی و هم چنین نوع تمرین زبانی که دانش آموزان در طول فعالیت های کلاسی به آن مشغول اند، کنترل می کند. این حقیقت ک...
15 صفحه اولProducts in Residue Classes
Abstract. We consider a problem of P. Erdős, A. M. Odlyzko and A. Sárkőzy about the representation of residue classes modulom by products of two not too large primes. While it seems that even the Extended Riemann Hypothesis is not powerful enough to achieve the expected results, here we obtain some unconditional results “on average” over moduli m and residue classes modulo m and somewhat strong...
متن کاملFunctions out of Higher Truncations
In homotopy type theory, the truncation operator ∥−∥n (for a number n ≥ −1) is often useful if one does not care about the higher structure of a type and wants to avoid coherence problems. However, its elimination principle only allows to eliminate into n-types, which makes it hard to construct functions ∥A∥n → B if B is not an n-type. This makes it desirable to derive more powerful elimination...
متن کاملDivisors in residue classes, constructively
Let r, s, n be integers satisfying 0 ≤ r < s < n, s ≥ n, α > 1/4, and gcd(r, s) = 1. Lenstra showed that the number of integer divisors of n equivalent to r (mod s) is upper bounded by O((α − 1/4)). We re-examine this problem; showing how to explicitly construct all such divisors and incidentally improve this bound to O((α−1/4)−3/2).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2006
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089506003120