Turing instability and Hopf bifurcation in a predator–prey model with delay and predator harvesting
نویسندگان
چکیده
منابع مشابه
Hopf bifurcation and Turing instability in the reaction–diffusion Holling–Tanner predator–prey model
The reaction–diffusion Holling–Tanner predator–prey model with Neumann boundary condition is considered. We perform a detailed stability and Hopf bifurcation analysis and derive conditions for determining the direction of bifurcation and the stability of the bifurcating periodic solution. For partial differential equation (PDE), we consider the Turing instability of the equilibrium solutions an...
متن کاملHopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملHarvesting and Hopf Bifurcation in a prey-predator model with Holling Type IV Functional Response
This paper aims to study the effect of Harvesting on predator species with time-delay on a Holling type-IV prey-predator model. Harvesting has a strong impact on the dynamic evolution of a population. Two delays are considered in the model of this paper to describe the time that juveniles of prey and predator take to mature. Dynamics of the system is studied in terms of local and Hopf bifurcati...
متن کاملHopf Bifurcation Analysis for a Modified Time-Delay Predator-Prey System with Harvesting
In this paper, we consider the direction and stability of time-delay induced Hopf bifurcation in a delayed predator-prey system with harvesting. We show that the positive equilibrium point is asymptotically stable in the absence of time delay, but loses its stability via the Hopf bifurcation when the time delay increases beyond a threshold. Furthermore, using the norm form and the center manifo...
متن کاملPersistence, Stability and Hopf Bifurcation in a Diffusive Ratio-Dependent Predator-Prey Model with Delay
In this paper, we study the persistence, stability and Hopf bifurcation in a ratio-dependent predator–prey model with diffusion and delay. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system and global stability of the boundary equilibrium. The local stability of the positive constant equilibrium and delay-induced Hopf bifurcation are investig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2019
ISSN: 1687-1847
DOI: 10.1186/s13662-019-2211-4