Twin Gaussian Processes for Structured Prediction
نویسندگان
چکیده
منابع مشابه
Bayesian Structured Prediction Using Gaussian Processes
We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (MN), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inferen...
متن کاملGaussian Processes for Prediction
We propose a powerful prediction algorithm built upon Gaussian processes (GPs). They are particularly useful for their flexibility, facilitating accurate prediction even in the absence of strong physical models. GPs further allow us to work within a complete Bayesian probabilistic framework. As such, we show how the hyperparameters of our system can be marginalised by use of Bayesian Monte Carl...
متن کاملStructured Variational Inference for Coupled Gaussian Processes
Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, theses GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it c...
متن کاملStructured Variational Inference for Coupled Gaussian Processes
Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, these GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it ca...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Vision
سال: 2009
ISSN: 0920-5691,1573-1405
DOI: 10.1007/s11263-008-0204-y