Twists of the Burkhardt quartic threefold
نویسندگان
چکیده
We study twists of the Burkhardt quartic threefold over non-algebraically closed base fields characteristic different from 2,3,5. show they all admit models in projective four-space. identify a Galois-cohomological obstruction that measures if given twist is birational to moduli space abelian varieties. This has implications for rational points on these As result, we see possible 3-level structures can be realized by surfaces, whereas Kummer group-theoretically may admissible, not realizable certain fields. give an example bivariate function field whose desingularization no at all. Our methods are based representation theory Sp(4,3), Galois cohomology, and classical algebraic geometry quartic.
منابع مشابه
On the smallest point on a diagonal quartic threefold
For the family a0x 4 = a1y +a2z +a3v +a4w 4, a0, . . . , a4 > 0, of diagonal quartic threefolds, we study the behaviour of the height of the smallest rational point versus the Tamagawa type number introduced by E. Peyre.
متن کامل2 8 Ja n 20 05 Plane quartic twists of X ( 5 , 3 ) Julio
Given an odd surjective Galois representation ̺ : GQ → PGL2(F3) and a positive integer N, there exists a twisted modular curve X(N, 3)̺ defined over Q whose rational points classify the quadratic Q-curves of degree N realizing ̺. The paper gives a method to provide an explicit plane quartic model for this curve in the genus-three case N= 5.
متن کاملFaster Pairing Computation on Jacobi Quartic Curves with High-Degree Twists
In this paper, we propose an elaborate geometric approach to explain the group law on Jacobi quartic curves which are seen as the intersection of two quadratic surfaces in space. Using the geometry interpretation we construct the Miller function. Then we present explicit formulae for the addition and doubling steps in Miller’s algorithm to compute Tate pairing on Jacobi quartic curves. Both the...
متن کاملThe Universal Kummer Threefold
The universal Kummer threefold is a 9-dimensional variety that represents the total space of the 6-dimensional family of Kummer threefolds in P7. We compute defining polynomials for three versions of this family, over the Satake hypersurface, over the Göpel variety, and over the reflection representation of type E7. We develop classical themes such as theta functions and Coble’s quartic hypersu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research in number theory
سال: 2022
ISSN: ['2363-9555', '2522-0160']
DOI: https://doi.org/10.1007/s40993-022-00372-3