Two phase free boundary problem for Poisson kernels
نویسندگان
چکیده
منابع مشابه
A two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملFree boundary regularity for harmonic measures and Poisson kernels
One of the basic aims of this paper is to study the relationship between the geometry of “hypersurface like” subsets of Euclidean space and the properties of the measures they support. In this context we show that certain doubling properties of a measure determine the geometry of its support. A Radon measure is said to be doubling with constant C if C times the measure of the ball of radius r c...
متن کاملA Two-Phase Free Boundary Problem for Harmonic Measure
We study a 2-phase free boundary problem for harmonic measure first considered by Kenig and Toro [KT06] and prove a sharp Hölder regularity result. The central difficulty is that there is no a priori non-degeneracy in the free boundary condition. Thus we must establish non-degeneracy by means of monotonicity formulae.
متن کاملa two-phase free boundary problem for a semilinear elliptic equation
in this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $dsubset mathbb{r}^{n}$ with smooth boundary. we give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of caffarelli and friedman regarding the representation of functions whose ...
متن کاملA Two-phase Problem with a Lower-dimensional Free Boundary
For a bounded domain D ⊂ Rn, we study minimizers of the energy functional ∫ D |∇u| dx+ ∫ D∩(Rn−1×{0}) λχ{u>0} + λ χ{u<0} dHn−1, without any sign restriction on the function u. One of the main result states that the free boundaries Γ = ∂{u(·, 0) > 0} and Γ− = ∂{u(·, 0) < 0} never touch. Moreover, using Alexandrov-type reflection technique, we can show that in dimension n = 3 the free boundaries ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2022
ISSN: ['1943-5258', '0022-2518', '1943-5266']
DOI: https://doi.org/10.1512/iumj.2022.71.8771